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Abstract -A consistent finite element model for a circular wheel is developed based on triangular
and quasi-triangular domains and a piecewise linear displacement field. The minimum stress­
rate principle of plasticity is used to obtain the solution of this two-dimensional continuum
problem with internal unloading. A piecewise approximation of the Tresca yield condition is
used. Elastic-plastic solutions of a wheel rolling on a rigid track under its own weight and a
hub load are obtained for the first few revolutions until a steady state condition is reached.
Shake-down conditions for the wheel are demonstrated.

1. INTRODUCTION

When a wheel which is either heavy with its own weight or which carries a heavy hub load
rolls on a straight track, both the wheel and the track will deform and there will generally be
a highly stressed region in both of them near the area of contact. As.a first step in the
analysis of this problem we assume that the track is substantially stronger than the wheel and
we focus our attention on the latter.

As the wheel rolls, the highly stressed region of the wheel will change and the original
highly stressed region will unload. However, after a rotation of 3600 the load system will be
the same as it was initially. If the entire process has been elastic, the solution at 3600 will
be identical with the initial solution, so that the wheel will immediately achieve a steady
state.

t This investigation was supported by the Office of Naval Research and by the National Science Founda-
tion while all three authors were associated with Illinois Institute of Technology.
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§ Associate Professor of Civil Engineering.
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However, let us consider the case where the loads are sufficiently great to cause plastic
behavior during the first revolution, but not so great that plastic collapse occurs. Then, as the
wheel rolls, the initially highly stressed plastic region will unload elastically. Since plastic
unloading follows a different law than plastic loading, there will be a non-zero residual stress
state after a complete revolution and the stress distributions at 3600 and 0° will not be
identical. A similar remark will apply to each subsequent revolution, but we would in­
tuitively expect that the wheel would soon approach a steady state in which conditions at a
total rotation angle of (8 + 360 nt were independent of n for n sufficiently large.

If this steady state exists, it may involve purely elastic behavior even though the initial
state was partially plastic or it may involve plastic behavior with each revolution. In the
latter case. the capacity of the wheel to absorb plastic work will soon be exhausted and the
material of the wheel may be expected to fail. Obviously, this state of affairs is to be avoided
in any practical design. However. if the steady state solution is purely elastic. it is probable
that no serious damage was done to the wheel by the first few plastic revolutions.

Our concern. then is to investigate the elastic-plastic behavior of the wheel during the
first few revolutions until a steady state is reached. An exact solution of this problem would
be exceedingly difficult to obtain and we shall begin by constructing a greatly simplified
model of the problem which will retain its most important factors. The model will be
described in detail in Section 2. but its essential features are easily stated.

The track will be taken as rigid and the wheel assumed to be in a state of plane stress.
The material of the wheel will be assumed to be elastic-perfectly plastic with a piecewise
linear yield condition. A finite element model will be used for the wheel and the loads wiIl be
approximated by ones which are piecewise linear in time when viewed from a reference
system which moves with the wheel.

In Section 3 we will formulate the stress rate problem and describe a method for its
solution and for its integration in time to obtain the stresses. Section 4 will present some
specific results and the paper will close by discussing some conclusions to be drawn from the
investigation.

2. MATHEMATlCAL MODEL

In the two-dimensional continuum model the wheel is represented by a circle. The finite
element model is obtained by first assigning a node at the center and connecting it to np

equispaced nodes along the circumference, thus dividing the circle into np sectors. Each
sector is then further divided into ms , 3-sided domains A\ the pattern being the same in
each sector and symmetric with respect to the center line of the sector. Each A k is deter­
mined by 3 nodes and nodes may be on the circumference of the circle or in its interior. A
side of Ak between two circumferential nodes is the portion of the circle between those
nodes; all other sides are straight. Obviously, the total number of domains is M = np ms •

We shall denote by Nand S the total number of nodes and edges, respectively.
Figure 1 shows the case np = 3, ms = 4. Thus, M = 12 and evidently N = 10 and S = 21.

Domains A 7_A 12 have one circular and two straight sides; the other domains are triangular.
Following Hodge[l], we use the principle of virtual work to establish the generalized

variables and defining equations. The displacement vector at node A is denoted byt t/J~ and
the complete set of t/J; uniquely determines a continuous, piecewise linear displacement field

t Greek subscripts have the range 1, 2 and follow the summation convention.
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Fig. I. Finite element model of wheel.
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over the wheel. Let u:(xt , x 2 ) denote this field in Ak
• Then the generalized strains for the

wheel are the set of 3M constants defined in Ak by

(2.1)

Here Ao is the area of wheel and Ak denotes its own area.
Next we define a dimensionless generalized stress set of 3M constants by

(2.2)

Where (Jo is the yield stress of the material. The set of constants (2.1) and (2.2) obviously
satisfy Prager's criterion[2] for generalized variables.

The wheel may be loaded by its own weight, by a concentrated load at the hub, and by the
reaction due to track. As shown in [1] the finite element model replaces the continuum load
distribution by a set of concentrated loads at the nodes given by

A

c; = C; +I f [f~(x, y)L'(x, y)JL'(X\ yA)] dA.
r

(2.3)
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A

Here C: is the concentrated load applied to the node, L denotes the sum over all domains,
A' which have Aas one of their nodes, fa is the external load vector, and L'(x. y) is the linear
factor

L' = ~
x y

x
,

y'
2 x " y "

where (x', y') and (x", y") are the coordinates of the other two vertices of domain A'. For a
triangle, r(x)., y).) A', but this is not true if any of the sides are curved. Equation (2.3)
was derived in[l] only for triangular domains, but it is equally valid for the curvilinear
triangles which include the boundary. The integration is to be performed for all external
loads including the weight of the wheel and the reaction of the track.

For the real physical wheel, the effect of the load will be to induce a deformation of the
wheel so that a finite length of it will be in contact with the rail. The reaction load will be
distributed over this small length in an unknown fashion to be determined by the boundary
conditions on displacements. However, since the reaction load enters the finite element
computations only through the integration in equation (2.3), it is evident that the details of
load distribution there will be relatively unimportant. Therefore, we consider the reaction
force to act as a concentrated load at the single point of contact of the undeformed wheel
with the track.

We find it convenient to keep coordinates fixed in the wheel. If 0 represents the total
angle through which the wheel has rolled from an initial position with the y-axis vertically
upward, the components of the body force per unit area, concentrated hub load, and reaction
force will be, respectively,

fa = wisin O. -cos 0)

Ha = F(sin e. -cos 0)

Ta = (nR2wd + F)( sin e, cos 8).

(2.4a)

(2.4b)

(2.4c)

Here Wd is the surface density, F is the magnitude of the hub load and R is the radius of the
wheel.

When equations (2.4) are substituted in equation (2.3), it is obvious that the resulting
nodal load components will be trignometric functions of e:

G; = 4>).(sin e, -cos e). (2.5)

As will be seen later, the complete solution to the problem will involve integration of
numerically determined results with respect to e. Although this is not difficult to do to any
desired degree of approximation based on (2.5), it is conceptually simpler and has certain
advantages in comparing and interpreting results, if we first replace (2.5) by a load history
which is piecewise linear in time. Therefore, we fix an interval AO and define a discrete set of
values On = n AO. Then in each interval On < 0 < 0n+l the load rate is taken to be the con­
stant

G; = [G;(On+l) - G;(On)]/AO. (2.6)

Finally, the load system (2.5) is replaced by the piecewise linear load system

F; = G;(On) + (0 - 0n)G; On < 0 < 0nT!' (2.7)
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(2.8)

As shown inti], substitution of (2.1), (2.2) and (2.7) into the Principle of Virtual Work
leads to the 2N equilibrium equations.

A 1 A'
~ 2 L'(XA,yA) [(T~l(Y' - yff) + (T~2(X'f x')] = F:/(To'

Any set of 3M constants (T~p and 2N constants F; which satisfy the 2N equations (2.8) will
be called a statically consistent set.

As shown in[3], the elastic-plastic constitutive equations for the finite element model have
the same form as for the continuum. Thus, if the wheel material has a yield condition
!«(Tap) ::; 0 and satisfies Drucker's postulates[4], the model variables must satisfy

'k ·k ·k (2.9a)E'."p = e"p + P"p

'k Ck ·k (2.9b)e"p = apA/l (TAil

f( (J:p) ::; 0 (2.9c)

( k k*) ·k 0 (2.9d)(Jap - (Jap Pap :::::

·k 'k O. (2.ge)(JapPap

Here e:p and P:fJ denote the elastic and plastic strain rates. (T:; is any other stress state
which satisfies (2.9c), C:/J}./l is defined as

(2.10)

where C"I3J./l is the symmetric tensor of elastic constants of the material.
The Tresca yield condition is represented geometrically by a circular cylinder with conical

caps. The axis of the figure is (T~ 1 = (J~2' (J~ 2 0; the cylinder has a radius of 1/2 and lies
between the planes (J~ 1 + (J~2 ± I ; the caps have vertices at (J~ I = (J~2 = ±1, (J12 0 and
intersect the cylinder at its bounding planes. For our model we replace the circular cylinder
and cones by a hexagonal prism and pyramids. thus leading to an 18-sided polygon

hi k 1 0aP(TaP - = i = 1,2.... , 18 (2.11 )

where b~p are listed in Table 1.
Although the Tresca yield condition is isotropic, the approximation (2.11) is not. In

order to minimize the effect of this induced anisotropy in the modeL the" yield axes" in
each finite element are chosen to be radial and circumferential through the center of gravity
of the element (Fig. I).

3. SOLUTION

The stress solution is found as a function of time by determining the stress rates at a
certain instant, integrating to find the stresses at a later instant, and continuing this process
To determine the stress rates, we consider the class of all "staticallv admissible" rate states
which satisfy the rate form of (2.8) and the constraints <

(3.1)

USS Vol. 10 No. 9-8
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Table 1. Values of b~p, equation (2.ll)

Plane 2V3 hi. 2V 3 b~2 2M2

a 2 2 2
b 4 4 0
c .,

-2 -2..
d 2 2 -2
e 4 4 0
f ·2 2 2
g v'j + I v'3 . 1 I
h '/3 + 2 v3 2 0
j \/3 +- 1 v'3 I -- I
k v'j ·.. 1 v'J + 1 -I
1 v3 2 \/'3 : 2 0
In v3·.. 1 y'j I I
n ,/3 + I ... \/3- I I
p v3 + 2 vi 2 0

'1 v'3+1 \'3 -I
,/3- 1 .. '/3, .. I
V 3 .. 2 \ 3 ! 2 0

-y'3 -·1 v'3 :-1 ]

which are implied by (2.9c). Then, as shown in[5J, the actual rate solution minimizes

(3.2)

among all statically admissible rate states.
This problem is known as" quadratic programming" and known mathematical pro­

cedures are available for its solution. Once the rates are known for some generic timet
e, the stresses at a later time l) + (je can: be computed from

a:p(D + be) = a:p(B) + oOo-:p. f3.3)

Equation (3.3) is generally just an approximation. However, due to the piecewise linear.
nature of the model problem, it is exact provided that the load rate (2.6) is constant and no
element enters a new plastic regime. Thus, if en ~ lJ < On+1 we require first that (j() satisfy

(3.4a)

Further, for each element and yield face for which b~p a:p(lJ) < I. we require that (je satisfy

b~fJ[(J:Jl(lJ) + bOo-~fJ] ~ 1. (3.4b)

Therefore, we choose (jO to be the largest number satisfying all of (3.4) whence (3.3) deter­
mines the stresses exactly at time lJ + (jO.

To start the solution, the wheel is regarded as not rolling (8 0) while the load magnitude
</1(t) is slowly increased at a constant rate to its final value. For this stage </1 replaces eas the
time variable. Initially all stresses and loads are zero. The quadratic programming problem

t Since perfectly plastic flow is quasi-static we can choose the rotation (J as our time variable.
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is solved for the stress rates, and b¢ is determined from formulas analogous to (3.4). Then,
with ¢ = b¢ the process is repeated and continued until the load reaches its full value with a
stress distribution denoted by u:p(O). Rates with respect to (J are computed, b(J is found
from (3.4) and stresses are found at {} = b(J. Continuing this process, we can find the stress
distribution at <IJlY finite time in a finite number of steps.

4. RESULTS

A computer program was written to study the elastic-plastic behavior of the wheel.
A quadratic programming routine[6] based on the simplex method was used to compute
the elastic solution and collapse loads for the wheel, and to solve the stress-rate problem.
The program was first tested with a three-element model of the wheel, but all the results
reported in this section are for the 12-element modelt shown in Fig. I. Loading conditions.
were gravity load only and hub load only.

Although the real wheel is fully symmetric with regard to position, the model exhibits only
60° symmetry. Therefore on initial loading the maximum elastic load factor and the collapse
load factor will vary with the initial orientation of the wheel, Fig. 2. The extent of these
variations is one measure of the error introduced by the model.
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\ 0.32
0.28
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Fig. 2. Elastic and collapse loads for model.
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Since the wheel will rotate under constant load magnitude after initial loading and since
superposition holds for fully elastic behavior, the maximum elastic load factor pe (p is
defined as wdlPo) is the minimum value over all orientations. Similarly, since plastic collapse
is independent of history, pC is the minimum plastic collapse factor over all orientations.

Once pe and pC were computed, the initial position was arbitrarily taken at (J = 0, a load
p between pe and pC was applied and a history of the wheel rolling under load p was com­
puted. For various values of p it was found that after only a few revolutions the wheel

t Computer limitations prohibited consideration at a more realistic model. This aspect is discussed further
in Section 5.
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reached a steady state in which stress history was repeated in each revolution. For loads
near pC this steady state was purely elastic even though plastic flow occurred prior to steady
state, whereas for loads near pc there was plastic flow in each revolution in the steady state.
We consider in some detail the case of gravity loading under the loads p = 0·34 or p = 0'35.
We note from Fig. 2, that for either magnitude the initial load application is fully elastic, and
that the loads are both between the elastic load pC = 0·28 and the collapse load pc = 0'38.

The stress histories are illustrated in Fig. 3 for the first four revolutions, the fourth being
steady state in each case. Each line of the figure denotes one revolution according to the
scale at the bottom and the upper and lower halves refer to the loads 0'34 and 0·35 res­
pectively. Clear regions indicate that the wheel is fully elastic and the shaded portions indi­
cate periods of partial plasticity. The numbers show which of the elements defined in Fig. I
are plastic and the lower-case letters denote the plastic regions defined in Table I.

2
0

.
34 SB ~B ~~ 7~j!L6e'4~11C0:55

'lo..J 9ll+4A f8e Illl lI~t5e,,4tIOC
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9a. 9a.+4b+8c lid IId+S.6+IOc 1~ 1..+6b+ltc

* STEADY STATE SOLUTION

IB~,J t=~=.==300:::rl~~IP360.
Fig. 3. Stress history under gravity load.

For p = 0'34, the wheel was partly ~Iastic for 25° of the first revolution. for less than I')
during the second revolution and reached a purely elastic steady state by the third revolution.
For p = 0,35, the plastic duration is increased about 10 per cent over the duration for 0·34
during the first revolution, steady state is not reached until the fourth revolution and from
then on the wheel is partly plastic during about 2° of each revolution. It is interesting to note
that during the initial revolution the plastic deformation is confined to the elements 4, 5, 6
which are essentially interior elements. On the other hand, in subsequent revolutions when
p = 0'35, most of the plastic deformation is in elements 7, 9, 11 which are on the boundary.
Also, although the geometry is symmetric every 60°, there is a definite influence of the
direction of rolling in that elements 8, 10, 12 on the boundary are plastic during less of the
revolution than are 7, 9, 11.

The initial revolution and the steady state both show the expected 120° symmetry, but
this is not true of the intermediate stages. This would indicate that the cross influence of
plastic behavior in part of the wheel on later plastic flow in another is slight, but that it is
noticeable in the period just prior to steady state.
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5. CONCLUSIONS

When a loaded wheel rolls on a straight track, an unknown pressure distribution takes
place along an unknown contact region and both the wheel and track are deformed accord­
ingly. This is a mixed boundary value problem with the following boundary conditions. On
some undetermined portion of the boundary of the two bodies the displacements are com­
patible and the contact stresses are in equilibrium. On the other portions of the boundary the
forces are prescribed to be zero.

The above defined boundary value problem is obviously a complex one, particularly if the
contact force is sufficiently great to cause some plastic behavior in the wheel or track. In an
effort to gain some insight into this problem, we have focused our attention on the wheel
and have adopted a greatly simplified two-dimensional model in which'the track is rigid, the
wheel is composed of a finite number of constant strain triangular elements, and all loads
(including the contact force) are independent of the deformations and are piecewise linear in
time.

In assessing the value of the model, we attempt to analyze how well it predicts important
features of behavior of the real wheel. If the real load is less than some critical value ii', the
wheel will always remain elastic; if the load exceeds some value pC, the wheel will undergo
excessive deformations on initial loading and will collapse. For loads between these two
values, plastic strains will occur near the contact area on the initial loading and during the
initial revolution. As the wheel turns, the earlier contact area will unload but will contain
residual stresses. During a second revolution, these residual stresses will affect the stresses
during the second contact period which may be either plastic or elastic. Experience suggests
that after some finite number of revolutions, a steady state will be reached. Further, for
loads only slightly above pe we would expect this steady state to be elastic, whereas for loads
close to pC it would probably involve some plastic flow in each revolution. The load pS which
separates these two types of behavior represents a significant description of the true strength
of the wheel since continued plastic straining will soon cause failure due to plastic fatigue or
unbounded plastic deformation, whereas a finite amount of plastic behavior prior to an
elastic state will probably not impair its usefulness.

The model does predict loads pe and pC. For a variety of loads between pe and pC a com­
plete analysis was carried out and in every case steady state was achieved in less than
five revolutions. The shakedown load pS was approximated by trial and error. Two different
loadings were considered (gravity only and hub only) and results were obtained for the 12­
element model (Fig. 1) and for an even more crude model of three 1200 sectors. Table 2
shows the results for the three critical loads.

The wide variation of numbers in Table 2 indicates that there is little basis for making
quantitative predictions of critical loads for the real wheel. Considering what a poor approx-

Table 2. Comparison between 12-element and
3-element models

Load Gravity Hub

Elements 12 3 12 3

p' 0·28 0·57 0·21 0·38
p' 0·34 0·64 0·24 0·45
pC 0·38 0·69 0·32 0·48
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mation 12 triangular elements are to a circle, this result is hardly surprising. Based on the
results obtained to date, we can only tentatively say that the shakedown load is probably
somewhere in the middle third of the range between the elastic and collapse loads.

Another basis for assessing the value of the model is the predicted symmetry of the
results. The real wheel is completely rotationally symmetric except that the initial loading
takes place in a specific orientation. The Il-element model exhibits only 60° symmetry and
the 3-element model is symmetric for 120". In both models the elastic load pe and the
collapse load pC vary with the initial orientation. However, the model does show a complete
120° symmetry for the stresses.

Table 3. Comparison between model and the real wheel

Feature Model Reality
----~.

I. Strains and Piecewise Continuously
stresses constant varying

2. Contact Concentrated Distributed
force

3. Force-time Piecewise Sinusoidal
behavior

4. Yield Piecewise linear Non-linear
condition anisotropic isotropic

5. Track Rigid Deformable

The model differs from reality in several features. as indicated in Table 3. Of these features
the first appears to be by far the most important. Contact stresses and strains are generally
very highly localized, so that any piecewiseconstant approximation will introduce a relatively
large error. Obviously it would be desirable to analyze a wheel with more elements since
this would presumably lead to a closer approximation to the true distribution.

In any tlnite element scheme, all loads are effectively replaced by equivalent nodal forces
so that features 2 and 3 regarding the loads will introduce little additional error. Since the 15°
approximation still provides 4 time-steps per element, it is certainly reasonable for the 12­
element model.

The piecewise linear yield condition can be made as close to the real one as desired.
The maximum effect of this approximation on pC and pc can be accurately estimated, and
it is not significant. The anisotropic feature is closely related to the number of elements.
The favored direction is precisely radial at each element's center, hence this error will also
decrease with more elements.

Finally. from the viewpoint of wheel analysis, the assumption on the track really only
affects feature 2 which has already been shown to be insignificant.

Two features of the model itself are worth commenting on. Many schemes for solving
finite element problems are based on direct solution of the defining equations (2.8) and
(2.9). This approach is an easy one to implement if one knows when an element at yield
remains plastic. In usual applications under a single monotonic load parameter all or most
elements at yield do remain plastic and little if any internal unloading occurs. In our
problem. however. internal unloading and reloading of elements is an essential feature of
the analysis as the wheel rolls. Thus. there are always two possibilities of loading or un­
loading for the non-elastic elements. In the usual approach[7] all non-elastic elements are
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either considered in the state of loading or an iterative technique is used. The first scheme is
obviously not applicable to this problem and with the second approach there is always
doubt about the rapidity or even the existence of the convergence of the process.

In the static approach to the problem by direct use of the static minimum principle and
quadratic programming, the question of which plastic elements unload is handled auto­
matically. This technique has been used previously on other problems[8-1O].

The other feature of interest is the piecewise linear yield condition. Such conditions have,
of course, been used in the past. Indeed. the Tresca yield condition can be regarded as a
piecewise linear approximation to the Mises yield condition when the principal stress direc­
tions are known. However, in problems such as this where the principal directions are not
known, the Tresca condition is also non-linear. In fact, there does not exist any closed
isotropic piecewise linear yield surface when the principal directions are variable. Therefore,
if we wish to use a piecewise linear yield surface we must pay the price of anisotropy in one
form or another. Since the wheel does not have any fixed cartesian axes of reference. we
have chosen to do this by making our piecewise linear approximation with reference to
radial and tangential axes for each element.

A drawback to this approach is that a large number of linear equations are needed to
define a yield surface, rather than a single non-linear one. However. this drawback is not
severe as it appears. For a polygonal yield surface. at any given time. most of the domains
are elastic. Therefore, even though we used 18 planes for the total description of the Tresca
yield surface. at anyone time a maximum of two of these were used for any element. Further.
for the 12-element model there were never more than three elements plastic at anyone time
and the maximum total constraints for any time step was five.

The above disadvantage of the piecewise linear yield condition is trivial compared to its
advantage for the present problem. If a non-linear yield condition is used with all other
aspects remaining the same. the time integration step for finding the stress from the stress
rate is equivalent to moving along the tangent. whereas the true solution for the model
moves along the nonlinear yeild surface.

Figure 4 shows symbolically some of the things that might happen. The dashed curve
represents the true solution which goes from A to B to C in two time steps. The obtained
solution moves along the solid-line tangent AB' in the first time step.

Fig. 4. Comparison between piecewise linear and non-linear yield conditions.



956 VlJAY K. GARG, SUBHASH C. ANAND and PHILIP G. HODGE, JR,

To evaluate the constraint at the second time step we must expand the yield curve so it
goes through B. Thus the next time step is along the new tangent to C.

From C to D both solutions unload and we have two choices to define our method.
Suppose first that we shrink the yield surface with the stress point until it regains its original
size. But then, if the true solution goes elastically from D to E, the obtained solution goes
plastically from D' to E'. ]1' this type of behavior happens in every revolution. we will
predict no shakedown, whereas the true solution does shakedown.

Alternatively, if we do not shrink the yield surface. then in a path such as DFGH the true
solution would show plastic flow whereas the obtained one would not.

Since the essence of the problem is to predict shakedown. some change must be made in
the above model and certainly a piecewise linear yield curve is one easy way of eliminating
the difficulty.
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A6cTpaKT --- Orrpe,l1eJllleTCli COBMeCTIIMali MO.l\eJ1b KOHC'IHOrO :3JleMeHTa ,I1Jlll KpyrJlOro
Kt).'reca Ha OCHOBe TpexyrOJlbHbIX H KBa3HTpexyrOJlbHbiX 06J1aCTeH H Kyco'lHoro nOolll J1lfHeH­
Horo rrepeMemeHllll. npllMeHlIcTcll nplIHlllln rrJ1aCTH'IHOCTIl ,I1JUI '>111HHMyMa l.:KOpOCTH
Harrpll)f(CHI111, C neJ1bJ{) pemeHHlI 'la,l1a'ill ):\ByxMepHoH cn.rromHoH CpeJlbI C BHyTpeHHoll pa3­
rPY3KoH. [.1crrOJ1b'lycTCli KYCO'iHOC npIl6J111)f(CHIiC YC5IOBHfl TC'IeHHlI TpecKI1. TIOJ1Y'iUJ{)TClI
ynpyra-rr.'1aCTI1'1eCKI1C pCmeHI111 KOJ1eCa, BpamaJ{)mcrOCll no )f(CCTKOH PCJ1bCOBOI1 rrYTll, [JO~

BJ1l1l1HHCM CBacro C06CTBCHHoro Beca 11 Becu BTY_'1KI1, JlJ111 rrepBblX HeCKOJTbKO 060pOTOB rrcpC)l
nOCTH)f(CIHle~1 yCToH'IIIBoro YCJ10Bllll. TIoKa3blBalOTCli ycnoBIHl rrpllcrroco6JTeHII1l .l\J111 Koneca,


